Function¶
- class auglib.transform.Function(function, function_args=None, *, preserve_level=False, bypass_prob=None)[source]¶
Apply a custom function to the signal.
The function gets as input a
numpy.ndarray
of shape(channels, samples)
with the content of the audio signal and the sampling rate. Additional arguments can be provided with thefunction_args
dictionary. Observable arguments (e.g.auglib.IntUni
) are automatically evaluated. The function must return anumpy.ndarray
.Note that the object is not serializable if the function relies on other locally defined functions. For instance, in this example object
f
is not serializable:def _plus_1(x, sr): return x + 1 def plus_1(x, sr): return _plus_1(x, sr) # calls local function -> not serializable f = auglib.transform.Function(plus_1)
- Parameters
function (
typing.Callable
[...
,numpy.ndarray
]) – (lambda) function objectfunction_args (
typing.Optional
[typing.Dict
]) – dictionary with additional function argumentspreserve_level (
typing.Union
[bool
,auglib.core.observe.Base
]) – ifTrue
the root mean square value of the augmented signal will be the same as before augmentationbypass_prob (
typing.Union
[float
,auglib.core.observe.Base
,None
]) – probability to bypass the transformation
Examples
Define a shutter function and set every second sample to 0 in a speech signal.
>>> import audb >>> import audiofile >>> import audplot >>> import auglib >>> import numpy as np >>> def shutter(signal, sampling_rate, block=1, non_block=1): ... n = 0 ... augmented_signal = signal.copy() ... while n < augmented_signal.shape[1]: ... augmented_signal[:, n + non_block : n + non_block + block] = 0 ... n += block + non_block ... return augmented_signal >>> transform = auglib.transform.Function(shutter) >>> files = audb.load_media("emodb", "wav/03a01Fa.wav", version="1.4.1") >>> signal, _ = audiofile.read(files[0]) >>> augmented_signal = transform(signal) >>> audplot.waveform(augmented_signal)
Repeatedly set 400 samples to zero, and leave 800 samples untouched of a speech signal.
>>> transform = auglib.transform.Function(shutter, {"block": 400, "non_block": 800}) >>> augmented_signal = transform(signal) >>> audplot.waveform(augmented_signal)
__call__()¶
- Function.__call__(signal, sampling_rate=None)¶
Apply transform to signal.
- Parameters
signal (
numpy.ndarray
) – signal to be transformedsampling_rate (
typing.Optional
[int
]) – sampling rate in Hz
- Return type
- Returns
augmented signal
- Raises
ValueError – if the signal shape is not support by chosen transform parameters
ValueError – if
sampling_rate
isNone
, but the transform requires a samling rateRuntimeError – if the given sampling rate is incompatible with the transform
arguments¶
- Function.arguments¶
Returns arguments that are serialized.
- Returns
Dictionary of arguments and their values.
- Raises
RuntimeError – if arguments are found that are not assigned to attributes of the same name
Examples
>>> import audobject.testing >>> o = audobject.testing.TestObject('test', point=(1, 1)) >>> o.arguments {'name': 'test', 'point': (1, 1)}
borrowed_arguments¶
- Function.borrowed_arguments¶
Returns borrowed arguments.
- Returns
Dictionary with borrowed arguments.
id¶
- Function.id¶
Object identifier.
The ID of an object ID is created from its non-hidden arguments.
- Returns
object identifier
Examples
>>> class Foo(Object): ... def __init__(self, bar: str): ... self.bar = bar >>> foo1 = Foo('I am unique!') >>> foo1.id '893df240-babe-d796-cdf1-c436171b7a96' >>> foo2 = Foo('I am different!') >>> foo2.id '9303f2a5-bfc9-e5ff-0ffa-a9846e2d2190' >>> foo3 = Foo('I am unique!') >>> foo1.id == foo3.id True
is_loaded_from_dict¶
- Function.is_loaded_from_dict¶
Check if object was loaded from a dictionary.
Returns
True
if object was initialized from a dictionary, e.g. after loading it from a YAML file.- Returns
True
if object was loaded from a dictionary,otherwise
False
short_id¶
- Function.short_id¶
Short object identifier.
The short ID consists of eight characters and is created from its non-hidden arguments.
- Returns
short object identifier
Examples
>>> class Foo(Object): ... def __init__(self, bar: str): ... self.bar = bar >>> foo1 = Foo('I am unique!') >>> foo1.id '893df240-babe-d796-cdf1-c436171b7a96' >>> foo1.short_id '171b7a96' >>> foo2 = Foo('I am different!') >>> foo2.short_id '6e2d2190' >>> foo3 = Foo('I am unique!') >>> foo1.short_id == foo3.short_id True
to_dict()¶
- Function.to_dict(*, include_version=True, flatten=False, root=None)¶
Converts object to a dictionary.
Includes items from
audobject.Object.arguments
. If an argument has a resolver, its value is encoded. Usually, the object can be re-instantiated usingaudobject.Object.from_dict()
. However, ifflatten=True
, this is not possible.- Parameters
include_version (
bool
) – add version to class nameflatten (
bool
) – flatten the dictionaryroot (
typing.Optional
[str
]) – if file is written to disk, set to target directory
- Return type
typing.Dict
[str
,typing.Union
[bool
,datetime.datetime
,dict
,float
,int
,list
,None
,str
]]- Returns
dictionary that represent the object
Examples
>>> import audobject.testing >>> o = audobject.testing.TestObject('test', point=(1, 1)) >>> o.to_dict(include_version=False) {'$audobject.core.testing.TestObject': {'name': 'test', 'point': [1, 1]}} >>> o.to_dict(flatten=True) {'name': 'test', 'point.0': 1, 'point.1': 1}
to_samples()¶
to_yaml()¶
- Function.to_yaml(path_or_stream, *, include_version=True)¶
Save object to YAML file.
- Parameters
path_or_stream (
typing.Union
[str
,typing.IO
]) – file path or streaminclude_version (
bool
) – add version to class name