Function¶
- class auglib.transform.Function(function, function_args=None, *, preserve_level=False, bypass_prob=None)[source]¶
Apply a custom function to the signal.
The function gets as input a
numpy.ndarrayof shape(channels, samples)with the content of the audio signal and the sampling rate. Additional arguments can be provided with thefunction_argsdictionary. Observable arguments (e.g.auglib.IntUni) are automatically evaluated. The function must return anumpy.ndarray.Note that the object is not serializable if the function relies on other locally defined functions. For instance, in this example object
fis not serializable:def _plus_1(x, sr): return x + 1 def plus_1(x, sr): return _plus_1(x, sr) # calls local function -> not serializable f = auglib.transform.Function(plus_1)
- Parameters
function (
typing.Callable[...,numpy.ndarray]) – (lambda) function objectfunction_args (
typing.Optional[typing.Dict]) – dictionary with additional function argumentspreserve_level (
typing.Union[bool,auglib.core.observe.Base]) – ifTruethe root mean square value of the augmented signal will be the same as before augmentationbypass_prob (
typing.Union[float,auglib.core.observe.Base,None]) – probability to bypass the transformation
Examples
Define a shutter function and set every second sample to 0 in a speech signal.
>>> import audb >>> import audiofile >>> import audplot >>> import auglib >>> import numpy as np >>> def shutter(signal, sampling_rate, block=1, non_block=1): ... n = 0 ... augmented_signal = signal.copy() ... while n < augmented_signal.shape[1]: ... augmented_signal[:, n + non_block : n + non_block + block] = 0 ... n += block + non_block ... return augmented_signal >>> transform = auglib.transform.Function(shutter) >>> files = audb.load_media("emodb", "wav/03a01Fa.wav", version="1.4.1") >>> signal, _ = audiofile.read(files[0]) >>> augmented_signal = transform(signal) >>> audplot.waveform(augmented_signal)
Repeatedly set 400 samples to zero, and leave 800 samples untouched of a speech signal.
>>> transform = auglib.transform.Function(shutter, {"block": 400, "non_block": 800}) >>> augmented_signal = transform(signal) >>> audplot.waveform(augmented_signal)
__call__()¶
- Function.__call__(signal, sampling_rate=None)¶
Apply transform to signal.
- Parameters
signal (
numpy.ndarray) – signal to be transformedsampling_rate (
typing.Optional[int]) – sampling rate in Hz
- Return type
- Returns
augmented signal
- Raises
ValueError – if the signal shape is not support by chosen transform parameters
ValueError – if
sampling_rateisNone, but the transform requires a samling rateRuntimeError – if the given sampling rate is incompatible with the transform
arguments¶
- Function.arguments¶
Returns arguments that are serialized.
- Returns
Dictionary of arguments and their values.
- Raises
RuntimeError – if arguments are found that are not assigned to attributes of the same name
Examples
>>> import audobject.testing >>> o = audobject.testing.TestObject('test', point=(1, 1)) >>> o.arguments {'name': 'test', 'point': (1, 1)}
borrowed_arguments¶
- Function.borrowed_arguments¶
Returns borrowed arguments.
- Returns
Dictionary with borrowed arguments.
id¶
- Function.id¶
Object identifier.
The ID of an object ID is created from its non-hidden arguments.
- Returns
object identifier
Examples
>>> class Foo(Object): ... def __init__(self, bar: str): ... self.bar = bar >>> foo1 = Foo('I am unique!') >>> foo1.id '893df240-babe-d796-cdf1-c436171b7a96' >>> foo2 = Foo('I am different!') >>> foo2.id '9303f2a5-bfc9-e5ff-0ffa-a9846e2d2190' >>> foo3 = Foo('I am unique!') >>> foo1.id == foo3.id True
is_loaded_from_dict¶
- Function.is_loaded_from_dict¶
Check if object was loaded from a dictionary.
Returns
Trueif object was initialized from a dictionary, e.g. after loading it from a YAML file.- Returns
Trueif object was loaded from a dictionary,otherwise
False
short_id¶
- Function.short_id¶
Short object identifier.
The short ID consists of eight characters and is created from its non-hidden arguments.
- Returns
short object identifier
Examples
>>> class Foo(Object): ... def __init__(self, bar: str): ... self.bar = bar >>> foo1 = Foo('I am unique!') >>> foo1.id '893df240-babe-d796-cdf1-c436171b7a96' >>> foo1.short_id '171b7a96' >>> foo2 = Foo('I am different!') >>> foo2.short_id '6e2d2190' >>> foo3 = Foo('I am unique!') >>> foo1.short_id == foo3.short_id True
to_dict()¶
- Function.to_dict(*, include_version=True, flatten=False, root=None)¶
Converts object to a dictionary.
Includes items from
audobject.Object.arguments. If an argument has a resolver, its value is encoded. Usually, the object can be re-instantiated usingaudobject.Object.from_dict(). However, ifflatten=True, this is not possible.- Parameters
include_version (
bool) – add version to class nameflatten (
bool) – flatten the dictionaryroot (
typing.Optional[str]) – if file is written to disk, set to target directory
- Return type
typing.Dict[str,typing.Union[bool,datetime.datetime,dict,float,int,list,None,str]]- Returns
dictionary that represent the object
Examples
>>> import audobject.testing >>> o = audobject.testing.TestObject('test', point=(1, 1)) >>> o.to_dict(include_version=False) {'$audobject.core.testing.TestObject': {'name': 'test', 'point': [1, 1]}} >>> o.to_dict(flatten=True) {'name': 'test', 'point.0': 1, 'point.1': 1}
to_samples()¶
to_yaml()¶
- Function.to_yaml(path_or_stream, *, include_version=True)¶
Save object to YAML file.
- Parameters
path_or_stream (
typing.Union[str,typing.IO]) – file path or streaminclude_version (
bool) – add version to class name