FFTConvolve¶
- class auglib.transform.FFTConvolve(aux, *, keep_tail=True, transform=None, preserve_level=False, bypass_prob=None)[source]¶
Convolve signal with another signal.
The convolution is done by a FFT-based approach.
- Parameters
aux (
typing.Union
[str
,auglib.core.observe.Base
,numpy.ndarray
,auglib.core.transform.Base
]) – auxiliary signal, file, or signal generating transform. If a transform is given it will be applied to an empty signal with the same length as the base signalkeep_tail (
typing.Union
[bool
,auglib.core.observe.Base
]) – keep the tail of the convolution result (extending the length of the signal), or to cut it out (keeping the original length of the input)transform (
typing.Optional
[auglib.core.transform.Base
]) – transformation applied to the auxiliary signalpreserve_level (
typing.Union
[bool
,auglib.core.observe.Base
]) – ifTrue
the root mean square value of the augmented signal will be the same as before augmentationbypass_prob (
typing.Union
[float
,auglib.core.observe.Base
,None
]) – probability to bypass the transformation
Examples
Filter a speech signal by a Telefunken M201/1 microphone.
>>> import audb >>> import audiofile >>> import audplot >>> import auglib >>> files = audb.load_media( ... "micirp", ... "dirs/Telefunken_M201.wav", ... version="1.0.0", ... sampling_rate=16000, ... ) >>> transform = auglib.transform.FFTConvolve(files[0]) >>> files = audb.load_media("emodb", "wav/03a01Fa.wav", version="1.4.1") >>> signal, _ = audiofile.read(files[0]) >>> augmented_signal = transform(signal) >>> audplot.waveform(augmented_signal)
Inspect its magnitude spectrum.
>>> import audmath >>> import matplotlib.pyplot as plt >>> import seaborn as sns >>> sigs = [signal, augmented_signal] >>> colors = ["#5d6370", "#e13b41"] >>> for sig, color in zip(sigs, colors): ... magnitude, f = plt.mlab.magnitude_spectrum(sig, Fs=sampling_rate) ... # Smooth magnitude ... magnitude = np.convolve(magnitude, np.ones(14) / 14, mode="same") ... plt.plot(f, audmath.db(magnitude), color=color) >>> plt.xlim([10, 8000]) >>> plt.ylim([-100, -45]) >>> plt.ylabel("Magnitude / dB") >>> plt.xlabel("Frequency / Hz") >>> plt.legend(["signal", "augmented signal"]) >>> plt.grid(alpha=0.4) >>> sns.despine() >>> plt.tight_layout()
__call__()¶
- FFTConvolve.__call__(signal, sampling_rate=None)¶
Apply transform to signal.
- Parameters
signal (
numpy.ndarray
) – signal to be transformedsampling_rate (
typing.Optional
[int
]) – sampling rate in Hz
- Return type
- Returns
augmented signal
- Raises
ValueError – if the signal shape is not support by chosen transform parameters
ValueError – if
sampling_rate
isNone
, but the transform requires a samling rateRuntimeError – if the given sampling rate is incompatible with the transform
arguments¶
- FFTConvolve.arguments¶
Returns arguments that are serialized.
- Returns
Dictionary of arguments and their values.
- Raises
RuntimeError – if arguments are found that are not assigned to attributes of the same name
Examples
>>> import audobject.testing >>> o = audobject.testing.TestObject('test', point=(1, 1)) >>> o.arguments {'name': 'test', 'point': (1, 1)}
borrowed_arguments¶
- FFTConvolve.borrowed_arguments¶
Returns borrowed arguments.
- Returns
Dictionary with borrowed arguments.
id¶
- FFTConvolve.id¶
Object identifier.
The ID of an object ID is created from its non-hidden arguments.
- Returns
object identifier
Examples
>>> class Foo(Object): ... def __init__(self, bar: str): ... self.bar = bar >>> foo1 = Foo('I am unique!') >>> foo1.id '893df240-babe-d796-cdf1-c436171b7a96' >>> foo2 = Foo('I am different!') >>> foo2.id '9303f2a5-bfc9-e5ff-0ffa-a9846e2d2190' >>> foo3 = Foo('I am unique!') >>> foo1.id == foo3.id True
is_loaded_from_dict¶
- FFTConvolve.is_loaded_from_dict¶
Check if object was loaded from a dictionary.
Returns
True
if object was initialized from a dictionary, e.g. after loading it from a YAML file.- Returns
True
if object was loaded from a dictionary,otherwise
False
short_id¶
- FFTConvolve.short_id¶
Short object identifier.
The short ID consists of eight characters and is created from its non-hidden arguments.
- Returns
short object identifier
Examples
>>> class Foo(Object): ... def __init__(self, bar: str): ... self.bar = bar >>> foo1 = Foo('I am unique!') >>> foo1.id '893df240-babe-d796-cdf1-c436171b7a96' >>> foo1.short_id '171b7a96' >>> foo2 = Foo('I am different!') >>> foo2.short_id '6e2d2190' >>> foo3 = Foo('I am unique!') >>> foo1.short_id == foo3.short_id True
to_dict()¶
- FFTConvolve.to_dict(*, include_version=True, flatten=False, root=None)¶
Converts object to a dictionary.
Includes items from
audobject.Object.arguments
. If an argument has a resolver, its value is encoded. Usually, the object can be re-instantiated usingaudobject.Object.from_dict()
. However, ifflatten=True
, this is not possible.- Parameters
include_version (
bool
) – add version to class nameflatten (
bool
) – flatten the dictionaryroot (
typing.Optional
[str
]) – if file is written to disk, set to target directory
- Return type
typing.Dict
[str
,typing.Union
[bool
,datetime.datetime
,dict
,float
,int
,list
,None
,str
]]- Returns
dictionary that represent the object
Examples
>>> import audobject.testing >>> o = audobject.testing.TestObject('test', point=(1, 1)) >>> o.to_dict(include_version=False) {'$audobject.core.testing.TestObject': {'name': 'test', 'point': [1, 1]}} >>> o.to_dict(flatten=True) {'name': 'test', 'point.0': 1, 'point.1': 1}
to_samples()¶
to_yaml()¶
- FFTConvolve.to_yaml(path_or_stream, *, include_version=True)¶
Save object to YAML file.
- Parameters
path_or_stream (
typing.Union
[str
,typing.IO
]) – file path or streaminclude_version (
bool
) – add version to class name