Correctness speaker average¶
w2v2-L-cat |
hubert-L-cat |
wavlm-cat |
data2vec-cat |
|
---|---|---|---|---|
Overall Score |
33.3% passed tests (4 passed / 8 failed). |
66.7% passed tests (8 passed / 4 failed). |
58.3% passed tests (7 passed / 5 failed). |
58.3% passed tests (7 passed / 5 failed). |
Class Proportion Mean Absolute Error¶
Data |
anger |
happiness |
neutral |
sadness |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w2v2-L-cat |
hubert-L-cat |
wavlm-cat |
data2vec-cat |
w2v2-L-cat |
hubert-L-cat |
wavlm-cat |
data2vec-cat |
w2v2-L-cat |
hubert-L-cat |
wavlm-cat |
data2vec-cat |
w2v2-L-cat |
hubert-L-cat |
wavlm-cat |
data2vec-cat |
|
iemocap-2.3.0-full |
0.06 |
0.05 |
0.06 |
0.04 |
0.11 |
0.07 |
0.05 |
0.04 |
0.28 |
0.11 |
0.09 |
0.14 |
0.23 |
0.09 |
0.11 |
0.16 |
meld-1.3.1-emotion.categories.test.gold_standard |
0.03 |
0.02 |
0.05 |
0.03 |
0.43 |
0.35 |
0.35 |
0.28 |
0.49 |
0.38 |
0.40 |
0.31 |
0.03 |
0.02 |
0.03 |
0.02 |
msppodcast-2.6.0-emotion.categories.test-1.gold_standard |
0.10 |
0.07 |
0.15 |
0.09 |
0.12 |
0.03 |
0.05 |
0.06 |
0.26 |
0.12 |
0.21 |
0.13 |
0.05 |
0.08 |
0.07 |
0.07 |
mean |
0.06 |
0.05 |
0.09 |
0.05 |
0.22 |
0.15 |
0.15 |
0.13 |
0.34 |
0.20 |
0.23 |
0.19 |
0.10 |
0.06 |
0.07 |
0.08 |
Visualization¶
The plot shows the proportion of the predicted samples for each class, as well as the true proportion of the class. We select a slightly higher threshold for the absolute error in the plots compared to the Class Proportion Difference test as we are interested in highlighting only big deviations here.
w2v2-L-cat |
hubert-L-cat |
wavlm-cat |
data2vec-cat |
---|---|---|---|