Bibliography¶
- ADudikW19
Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. Fair regression: quantitative definitions and reduction-based algorithms. In International Conference on Machine Learning, 120–129. PMLR, 2019.
- APC+17
Shahin Amiriparian, Sergey Pugachevskiy, Nicholas Cummins, Simone Hantke, Jouni Pohjalainen, Gil Keren, and Björn W. Schuller. CAST a database: rapid targeted large-scale big data acquisition via small-world modelling of social media platforms. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), 340–345. 2017. URL: https://doi.org/10.1109/ACII.2017.8273622.
- FSRE07
Johnny RJ Fontaine, Klaus R Scherer, Etienne B Roesch, and Phoebe C Ellsworth. The world of emotions is not two-dimensional. Psychological science, 18(12):1050–1057, 2007. URL: https://doi.org/10.1111/j.1467-9280.2007.02024.x.
- GFSS16
Christelle Gillioz, Johnny RJ Fontaine, Cristina Soriano, and Klaus R Scherer. Mapping emotion terms into affective space: Further evidence for a four-dimensional structure. Swiss Journal of Psychology, 75(3):141, 2016. URL: https://www.researchgate.net/profile/Christelle-Gillioz/publication/304184175_Mapping_Emotion_Terms_into_Affective_Space_Further_Evidence_for_a_Four-Dimensional_Structure/links/5770e03b08ae842225aad306/Mapping-Emotion-Terms-into-Affective-Space-Further-Evidence-for-a-Four-Dimensional-Structure.pdf.
- HSS+12
Holger Hoffmann, Andreas Scheck, Timo Schuster, Steffen Walter, Kerstin Limbrecht, Harald C. Traue, and Henrik Kessler. Mapping discrete emotions into the dimensional space: An empirical approach. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3316–3320. 2012. URL: https://www.researchgate.net/profile/Harald-Traue/publication/234063387_Mapping_discrete_emotions_into_the_dimensional_space_An_empirical_approach/links/545257fa0cf2cf516479c6e2/Mapping-discrete-emotions-into-the-dimensional-space-An-empirical-approach.pdf.
- JP21
Mimansa Jaiswal and Emily Mower Provost. Best practices for noise-based augmentation to improve the performance of emotion recognition "in the wild". arXiv preprint arXiv:2104.08806, 2021. URL: https://arxiv.org/abs/2104.08806.
- JSV09
Marco Jeub, Magnus Schäfer, and Peter Vary. A binaural room impulse response database for the evaluation of dereverberation algorithms. In Proceedings of International Conference on Digital Signal Processing (DSP), 1–4. Santorini, Greece, July 2009. IEEE, IET, EURASIP, IEEE.
- MMS+21
Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on bias and fairness in machine learning. ACM Comput. Surv., jul 2021. doi:10.1145/3457607.
- SGCP15
David Snyder, Guoguo Guoguo Chen, and Daniel Povey. MUSAN: a music, speech, and noise corpus. arXiv preprint arXiv:1510.08484, 2015. URL: https://arxiv.org/abs/1510.08484.
- VT17
Gyanendra K Verma and Uma Shanker Tiwary. Affect representation and recognition in 3D continuous valence–arousal–dominance space. Multimedia Tools and Applications, 76(2):2159–2183, 2017. URL: https://www.researchgate.net/profile/Gyanendra-Verma/publication/284724383_Affect_Representation_and_Recognition_in_3D_Continuous_Valence-Arousal-Dominance_Space/links/5b0f85ca4585157f872485be/Affect-Representation-and-Recognition-in-3D-Continuous-Valence-Arousal-Dominance-Space.pdf.
- WGH+06
Jimi YC Wen, Nikolay D Gaubitch, Emanuel AP Habets, Tony Myatt, and Patrick A Naylor. Evaluation of speech dereverberation algorithms using the mardy database. In in Proc. Intl. Workshop Acoust. Echo Noise Control (IWAENC. 2006. URL: https://www.researchgate.net/profile/Peter-Vary/publication/224576432_A_binaural_room_impulse_response_database_for_the_evaluation_of_dereverberation_algorithms/links/00b4952a97efc81c15000000/A-binaural-room-impulse-response-database-for-the-evaluation-of-dereverberation-algorithms.pdf.
- ZHML19
Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine Learning Testing: Survey, Landscapes and Horizons. arXiv:1906.10742 [cs, stat], 2019. URL: http://arxiv.org/abs/1906.10742.