identification_error_rate()¶
- audmetric.identification_error_rate(truth, prediction, *, num_workers=1, multiprocessing=False)[source]¶
Identification error rate.
where is the total confusion duration, is the total duration of predictions without an overlapping ground truth, is the total duration of ground truth without an overlapping prediction, and is the total duration of ground truth segments. [1]
The identification error rate should be used when the labels are known by the prediction model. If this isn’t the case, consider using
audmetric.diarization_error_rate().- Parameters:
truth (
Series) – ground truth labels with a segmented index conform to audformatprediction (
Series) – predicted labels with a segmented index conform to audformatnum_workers (
int) – number of threads or 1 for sequential processingmultiprocessing (
bool) – use multiprocessing instead of multithreading
- Return type:
float- Returns:
identification error rate
- Raises:
ValueError – if
truthorpredictiondo not have a segmented index conform to audformat
Examples
>>> import pandas as pd >>> import audformat >>> truth = pd.Series( ... index=audformat.segmented_index( ... files=["f1.wav", "f1.wav"], ... starts=[0.0, 0.1], ... ends=[0.1, 0.2], ... ), ... data=["a", "b"], ... ) >>> prediction = pd.Series( ... index=audformat.segmented_index( ... files=["f1.wav", "f1.wav", "f1.wav"], ... starts=[0, 0.1, 0.1], ... ends=[0.1, 0.15, 0.2], ... ), ... data=["a", "b", "a"], ... ) >>> identification_error_rate(truth, prediction) 0.5