confusion_matrix()¶
- audplot.confusion_matrix(truth, prediction, *, labels=None, label_aliases=None, percentage=False, show_both=False, ax=None)[source]¶
Confusion matrix between ground truth and prediction.
The confusion matrix is calculated by
audmetric.confusion_matrix.- Parameters
labels (
Optional[Sequence]) – labels to be included in confusion matrixlabel_aliases (
Optional[Dict]) – mapping to alias names for labels to be presented in the plotpercentage (
bool) – ifTruepresent the confusion matrix with percentage values instead of absolute numbersshow_both (
bool) – ifTrueand percentage isTrueit shows absolute numbers in brackets below percentage values. IfTrueand percentage isFalseit shows the percentage in brackets below absolute numbersax (
Optional[Axes]) – pre-existing axes for the plot. Otherwise, callsmatplotlib.pyplot.gca()internally
Examples
>>> truth = [0, 1, 1, 1, 2, 2, 2] * 1000 >>> prediction = [0, 1, 2, 2, 0, 0, 2] * 1000 >>> confusion_matrix(truth, prediction)
>>> confusion_matrix(truth, prediction, percentage=True)
>>> confusion_matrix(truth, prediction, show_both=True)
>>> confusion_matrix(truth, prediction, percentage=True, show_both=True)
>>> confusion_matrix(truth, prediction, labels=[0, 1, 2, 3])
>>> confusion_matrix(truth, prediction, label_aliases={0: "A", 1: "B", 2: "C"})