import errno
import os
import typing
import numpy as np
import pandas as pd
import audeer
import audformat
from audinterface.core import utils
from audinterface.core.typing import Timestamp
from audinterface.core.typing import Timestamps
def signal_index(signal, sampling_rate, **kwargs) -> pd.MultiIndex:
r"""Default segment process function.
This function is used,
when ``Segment`` is instantiated
with ``process_func=None``.
It returns an empty multi-index,
with levels ``start`` and ``end``.
Args:
signal: signal
sampling_rate: sampling rate in Hz
**kwargs: additional keyword arguments of the processing function
Returns:
index with segments
"""
return utils.signal_index()
def inverted_process_func(
signal,
sampling_rate,
*,
__process_func,
**kwargs,
) -> pd.MultiIndex:
r"""Inverted segment process function.
This function is used,
when ``Segment`` is instantiated
with ``invert=True``.
Args:
signal: signal
sampling_rate: sampling rate in Hz
__process_func: process func to invert.
Note, ``__process_func`` needs to be added to ``process_func_args``
before calling this function.
This means, a user cannot use ``__process_func``
as argument name
in ``process_func``
**kwargs: additional keyword arguments of the processing function
Returns:
index with segments
"""
index = __process_func(signal, sampling_rate, **kwargs)
duration = pd.to_timedelta(signal.shape[-1] / sampling_rate, unit="s")
index = index.sortlevel("start")[0]
index = merge_index(index)
index = invert_index(index, duration)
return index
def invert_index(
index: pd.MultiIndex,
dur: pd.Timedelta,
) -> pd.MultiIndex:
r"""Invert index.
Assumes that index is sorted by 'start' level.
"""
if index.empty:
return utils.signal_index(0, dur)
starts = index.get_level_values("start")
ends = index.get_level_values("end")
new_starts = ends[:-1]
new_ends = starts[1:]
if starts[0] != pd.to_timedelta(0):
new_starts = new_starts.insert(0, pd.to_timedelta(0))
new_ends = new_ends.insert(0, starts[0])
if ends[-1] != dur:
new_starts = new_starts.insert(len(new_starts), ends[-1])
new_ends = new_ends.insert(len(new_ends), dur)
return utils.signal_index(new_starts, new_ends)
def merge_index(
index: pd.MultiIndex,
) -> pd.MultiIndex:
r"""Merge overlapping segments.
Assumes that index is sorted by 'start' level.
"""
if index.empty:
return index
starts = index.get_level_values("start")
ends = index.get_level_values("end")
new_starts = []
new_ends = []
new_start = starts[0]
new_end = ends[0]
for start, end in zip(starts[1:], ends[1:]):
if start > new_end:
new_starts.append(new_start)
new_ends.append(new_end)
new_start = start
new_end = end
elif end > new_end:
new_end = end
new_starts.append(new_start)
new_ends.append(new_end)
return utils.signal_index(new_starts, new_ends)
[docs]class Segment:
r"""Segmentation interface.
Interface for models that apply a segmentation to the input signal,
e.g. a voice activity model that detects speech regions.
Args:
process_func: segmentation function,
which expects the two positional arguments ``signal``
and ``sampling_rate``
and any number of additional keyword arguments
(see ``process_func_args``).
There are the following special arguments:
``'idx'``, ``'file'``, ``'root'``.
If expected by the function,
but not specified in
``process_func_args``,
they will be replaced with:
a running index,
the currently processed file,
the root folder.
Must return a :class:`pandas.MultiIndex` with two levels
named `start` and `end` that hold start and end
positions as :class:`pandas.Timedelta` objects
process_func_args: (keyword) arguments passed on to the processing
function
invert: Invert the segmentation
sampling_rate: sampling rate in Hz
If ``None`` it will call ``process_func`` with the actual
sampling rate of the signal
resample: if ``True`` enforces given sampling rate by resampling
channels: channel selection, see :func:`audresample.remix`
mixdown: apply mono mix-down on selection
min_signal_dur: minimum signal length
required by ``process_func``.
If value is a float or integer
it is treated as seconds.
See :func:`audinterface.utils.to_timedelta` for further options.
If provided signal is shorter,
it will be zero padded at the end
max_signal_dur: maximum signal length
required by ``process_func``.
If value is a float or integer
it is treated as seconds.
See :func:`audinterface.utils.to_timedelta` for further options.
If provided signal is longer,
it will be cut at the end
keep_nat: if the end of segment is set to ``NaT`` do not replace
with file duration in the result
num_workers: number of parallel jobs or 1 for sequential
processing. If ``None`` will be set to the number of
processors on the machine multiplied by 5 in case of
multithreading and number of processors in case of
multiprocessing
multiprocessing: use multiprocessing instead of multithreading
verbose: show debug messages
Raises:
ValueError: if ``resample = True``, but ``sampling_rate = None``
Examples:
>>> def segment(signal, sampling_rate, *, win_size=0.2, hop_size=0.1):
... size = signal.shape[1] / sampling_rate
... starts = pd.to_timedelta(np.arange(0, size - win_size, hop_size), unit="s")
... ends = pd.to_timedelta(np.arange(win_size, size, hop_size), unit="s")
... return pd.MultiIndex.from_tuples(zip(starts, ends), names=["start", "end"])
>>> interface = Segment(process_func=segment)
>>> signal = np.array([1.0, 2.0, 3.0])
>>> interface(signal, sampling_rate=3)
MultiIndex([( '0 days 00:00:00', '0 days 00:00:00.200000'),
('0 days 00:00:00.100000', '0 days 00:00:00.300000'),
('0 days 00:00:00.200000', '0 days 00:00:00.400000'),
('0 days 00:00:00.300000', '0 days 00:00:00.500000'),
('0 days 00:00:00.400000', '0 days 00:00:00.600000'),
('0 days 00:00:00.500000', '0 days 00:00:00.700000'),
('0 days 00:00:00.600000', '0 days 00:00:00.800000'),
('0 days 00:00:00.700000', '0 days 00:00:00.900000')],
names=['start', 'end'])
>>> # Apply interface on an audformat conform index of a dataframe
>>> import audb
>>> db = audb.load(
... "emodb",
... version="1.3.0",
... media="wav/03a01Fa.wav",
... full_path=False,
... verbose=False,
... )
>>> interface = Segment(
... process_func=segment,
... process_func_args={"win_size": 0.5, "hop_size": 0.25},
... )
>>> interface.process_index(db["emotion"].index, root=db.root)
MultiIndex([('wav/03a01Fa.wav', '0 days 00:00:00', ...),
('wav/03a01Fa.wav', '0 days 00:00:00.250000', ...),
('wav/03a01Fa.wav', '0 days 00:00:00.500000', ...),
('wav/03a01Fa.wav', '0 days 00:00:00.750000', ...),
('wav/03a01Fa.wav', '0 days 00:00:01', ...),
('wav/03a01Fa.wav', '0 days 00:00:01.250000', ...)],
names=['file', 'start', 'end'])
""" # noqa: E501
def __init__(
self,
*,
process_func: typing.Callable[..., pd.MultiIndex] = None,
process_func_args: typing.Dict[str, typing.Any] = None,
invert: bool = False,
sampling_rate: int = None,
resample: bool = False,
channels: typing.Union[int, typing.Sequence[int]] = None,
mixdown: bool = False,
min_signal_dur: Timestamp = None,
max_signal_dur: Timestamp = None,
keep_nat: bool = False,
num_workers: typing.Optional[int] = 1,
multiprocessing: bool = False,
verbose: bool = False,
):
# avoid cycling imports
from audinterface.core.process import Process
if process_func is None:
process_func = signal_index
if invert:
process_func_args = process_func_args or {}
process_func_args["__process_func"] = process_func
process_func = inverted_process_func
process = Process(
process_func=process_func,
process_func_args=process_func_args,
sampling_rate=sampling_rate,
resample=resample,
channels=channels,
mixdown=mixdown,
min_signal_dur=min_signal_dur,
max_signal_dur=max_signal_dur,
keep_nat=keep_nat,
num_workers=num_workers,
multiprocessing=multiprocessing,
verbose=verbose,
)
self.process = process
r"""Processing object."""
self.invert = invert
r"""Invert segmentation."""
[docs] def process_file(
self,
file: str,
*,
start: Timestamp = None,
end: Timestamp = None,
root: str = None,
process_func_args: typing.Dict[str, typing.Any] = None,
) -> pd.Index:
r"""Segment the content of an audio file.
Args:
file: file path
start: start processing at this position.
If value is a float or integer it is treated as seconds.
See :func:`audinterface.utils.to_timedelta` for further options
end: end processing at this position.
If value is a float or integer it is treated as seconds.
See :func:`audinterface.utils.to_timedelta` for further options
root: root folder to expand relative file path
process_func_args: (keyword) arguments passed on
to the processing function.
They will temporarily overwrite
the ones stored in
:attr:`audinterface.Segment.process.process_func_args`
Returns:
Segmented index conform to audformat_
Raises:
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
.. _audformat: https://audeering.github.io/audformat/data-format.html
"""
if start is None or pd.isna(start):
start = pd.to_timedelta(0)
index = self.process.process_file(
file,
start=start,
end=end,
root=root,
process_func_args=process_func_args,
).values[0]
return audformat.segmented_index(
files=[file] * len(index),
starts=index.get_level_values("start") + start,
ends=index.get_level_values("end") + start,
)
[docs] def process_files(
self,
files: typing.Sequence[str],
*,
starts: Timestamps = None,
ends: Timestamps = None,
root: str = None,
process_func_args: typing.Dict[str, typing.Any] = None,
) -> pd.Index:
r"""Segment a list of files.
Args:
files: list of file paths
starts: segment start positions.
Time values given as float or integers are treated as seconds.
See :func:`audinterface.utils.to_timedelta`
for further options.
If a scalar is given, it is applied to all files
ends: segment end positions.
Time values given as float or integers are treated as seconds
See :func:`audinterface.utils.to_timedelta`
for further options.
If a scalar is given, it is applied to all files
root: root folder to expand relative file paths
process_func_args: (keyword) arguments passed on
to the processing function.
They will temporarily overwrite
the ones stored in
:attr:`audinterface.Segment.process.process_func_args`
Returns:
Segmented index conform to audformat_
Raises:
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
.. _audformat: https://audeering.github.io/audformat/data-format.html
"""
y = self.process.process_files(
files,
starts=starts,
ends=ends,
root=root,
process_func_args=process_func_args,
)
if len(y) == 0:
return audformat.filewise_index()
files = []
starts = []
ends = []
for (file, start, _), index in y.items():
files.extend([file] * len(index))
starts.extend(index.get_level_values("start") + start)
ends.extend(index.get_level_values("end") + start)
return audformat.segmented_index(files, starts, ends)
[docs] def process_folder(
self,
root: str,
*,
filetype: str = "wav",
include_root: bool = True,
process_func_args: typing.Dict[str, typing.Any] = None,
) -> pd.Index:
r"""Segment files in a folder.
.. note:: At the moment does not scan in sub-folders!
Args:
root: root folder
filetype: file extension
include_root: if ``True``
the file paths are absolute
in the index
of the returned result
process_func_args: (keyword) arguments passed on
to the processing function.
They will temporarily overwrite
the ones stored in
:attr:`audinterface.Segment.process.process_func_args`
Returns:
Segmented index conform to audformat_
Raises:
FileNotFoundError: if folder does not exist
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
.. _audformat: https://audeering.github.io/audformat/data-format.html
"""
root = audeer.path(root)
if not os.path.exists(root):
raise FileNotFoundError(
errno.ENOENT,
os.strerror(errno.ENOENT),
root,
)
files = audeer.list_file_names(
root,
filetype=filetype,
basenames=not include_root,
)
return self.process_files(
files,
root=root,
process_func_args=process_func_args,
)
[docs] def process_index(
self,
index: pd.Index,
*,
root: str = None,
cache_root: str = None,
process_func_args: typing.Dict[str, typing.Any] = None,
) -> pd.Index:
r"""Segment files or segments from an index.
If ``cache_root`` is not ``None``,
a hash value is created from the index
using :func:`audformat.utils.hash` and
the result is stored as
``<cache_root>/<hash>.pkl``.
When called again with the same index,
results will be read from the cached file.
Args:
index: index conform to audformat_
root: root folder to expand relative file paths
cache_root: cache folder (see description)
process_func_args: (keyword) arguments passed on
to the processing function.
They will temporarily overwrite
the ones stored in
:attr:`audinterface.Segment.process.process_func_args`
Returns:
Segmented index conform to audformat_
Raises:
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
.. _audformat: https://audeering.github.io/audformat/data-format.html
"""
index = audformat.utils.to_segmented_index(index)
utils.assert_index(index)
if index.empty:
return index
y = self.process.process_index(
index,
preserve_index=False,
root=root,
cache_root=cache_root,
process_func_args=process_func_args,
)
files = []
starts = []
ends = []
for (file, start, _), index in y.items():
files.extend([file] * len(index))
starts.extend(index.get_level_values("start") + start)
ends.extend(index.get_level_values("end") + start)
return audformat.segmented_index(files, starts, ends)
[docs] def process_table(
self,
table: typing.Union[pd.Series, pd.DataFrame],
*,
root: str = None,
cache_root: str = None,
process_func_args: typing.Dict[str, typing.Any] = None,
) -> typing.Union[pd.Series, pd.DataFrame]:
r"""Segment files or segments from a table.
The labels of the table
are reassigned to the new segments.
If ``cache_root`` is not ``None``,
a hash value is created from the index
using :func:`audformat.utils.hash` and
the result is stored as
``<cache_root>/<hash>.pkl``.
When called again with the same index,
results will be read from the cached file.
Args:
table: :class:`pandas.Series` or :class:`pandas.DataFrame`
with an index conform to audformat_
root: root folder to expand relative file paths
cache_root: cache folder (see description)
process_func_args: (keyword) arguments passed on
to the processing function.
They will temporarily overwrite
the ones stored in
:attr:`audinterface.Segment.process.process_func_args`
Returns:
Segmented table with an index conform to audformat_
Raises:
ValueError: if table is not a :class:`pandas.Series`
or a :class:`pandas.DataFrame`
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
.. _audformat: https://audeering.github.io/audformat/data-format.html
"""
if not isinstance(table, pd.Series) and not isinstance(table, pd.DataFrame):
raise ValueError("table has to be pd.Series or pd.DataFrame")
index = audformat.utils.to_segmented_index(table.index)
utils.assert_index(index)
if index.empty:
return table
y = self.process.process_index(
index,
preserve_index=False,
root=root,
cache_root=cache_root,
process_func_args=process_func_args,
)
# Assign labels from the original table
# to the newly created segments
files = []
starts = []
ends = []
labels = []
if isinstance(table, pd.Series):
for n, ((file, start, _), index) in enumerate(y.items()):
files.extend([file] * len(index))
starts.extend(index.get_level_values("start") + start)
ends.extend(index.get_level_values("end") + start)
labels.extend([[table.iloc[n]] * len(index)])
labels = np.hstack(labels)
else:
for n, ((file, start, _), index) in enumerate(y.items()):
files.extend([file] * len(index))
starts.extend(index.get_level_values("start") + start)
ends.extend(index.get_level_values("end") + start)
if len(index) > 0: # avoid issues when stacking 0-length dataframes
labels.extend([[table.iloc[n].values] * len(index)])
if len(labels) > 0:
labels = np.vstack(labels)
else:
labels = np.empty((0, table.shape[1])) # avoid issue below
index = audformat.segmented_index(files, starts, ends)
if isinstance(table, pd.Series):
dtype = table.dtype
table = pd.Series(labels, index, name=table.name, dtype=dtype)
else:
dtypes = [table[col].dtype for col in table.columns]
labels = {
col: pd.Series(
labels[:, ncol], index=index, dtype=dtypes[ncol]
) # supports also category
for ncol, col in enumerate(table.columns)
}
table = pd.DataFrame(labels, index)
return table
[docs] def process_signal(
self,
signal: np.ndarray,
sampling_rate: int,
*,
file: str = None,
start: Timestamp = None,
end: Timestamp = None,
process_func_args: typing.Dict[str, typing.Any] = None,
) -> pd.Index:
r"""Segment audio signal.
.. note:: If a ``file`` is given, the index of the returned frame
has levels ``file``, ``start`` and ``end``. Otherwise,
it consists only of ``start`` and ``end``.
Args:
signal: signal values
sampling_rate: sampling rate in Hz
file: file path
start: start processing at this position.
If value is a float or integer it is treated as seconds.
See :func:`audinterface.utils.to_timedelta` for further options
end: end processing at this position.
If value is a float or integer it is treated as seconds.
See :func:`audinterface.utils.to_timedelta` for further options
process_func_args: (keyword) arguments passed on
to the processing function.
They will temporarily overwrite
the ones stored in
:attr:`audinterface.Segment.process.process_func_args`
Returns:
Segmented index conform to audformat_
Raises:
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
.. _audformat: https://audeering.github.io/audformat/data-format.html
"""
index = self.process.process_signal(
signal,
sampling_rate,
file=file,
start=start,
end=end,
process_func_args=process_func_args,
).values[0]
utils.assert_index(index)
if start is not None:
start = utils.to_timedelta(start)
# Here we change directly the levels,
# so we need to use
# `index.levels[0]`
# instead of
# `index.get_level_values('start')`
index = index.set_levels(
[
index.levels[0] + start,
index.levels[1] + start,
],
level=[0, 1],
)
if file is not None:
index = audformat.segmented_index(
files=[file] * len(index),
starts=index.get_level_values("start"),
ends=index.get_level_values("end"),
)
return index
[docs] def process_signal_from_index(
self,
signal: np.ndarray,
sampling_rate: int,
index: pd.Index,
process_func_args: typing.Dict[str, typing.Any] = None,
) -> pd.Index:
r"""Segment parts of a signal.
Args:
signal: signal values
sampling_rate: sampling rate in Hz
index: a segmented index conform to audformat_
or a :class:`pandas.MultiIndex` with two levels
named `start` and `end` that hold start and end
positions as :class:`pandas.Timedelta` objects.
See also :func:`audinterface.utils.signal_index`
process_func_args: (keyword) arguments passed on
to the processing function.
They will temporarily overwrite
the ones stored in
:attr:`audinterface.Segment.process.process_func_args`
Returns:
Segmented index conform to audformat_
Raises:
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
ValueError: if index contains duplicates
.. _audformat: https://audeering.github.io/audformat/data-format.html
"""
utils.assert_index(index)
if index.empty:
return index
if isinstance(index, pd.MultiIndex) and len(index.levels) == 2:
has_file_level = False
params = [
(
(signal, sampling_rate),
{"start": start, "end": end},
)
for start, end in index
]
else:
has_file_level = True
index = audformat.utils.to_segmented_index(index)
params = [
(
(signal, sampling_rate),
{
"file": file,
"start": start,
"end": end,
"process_func_args": process_func_args,
},
)
for file, start, end in index
]
y = audeer.run_tasks(
self.process_signal,
params,
num_workers=self.process.num_workers,
multiprocessing=self.process.multiprocessing,
progress_bar=self.process.verbose,
task_description=f"Process {len(index)} segments",
)
files = []
starts = []
ends = []
for idx in y:
if has_file_level:
files.extend(idx.get_level_values("file"))
starts.extend(idx.get_level_values("start"))
ends.extend(idx.get_level_values("end"))
if has_file_level:
index = audformat.segmented_index(files, starts, ends)
else:
index = utils.signal_index(starts, ends)
return index
[docs] def __call__(
self,
signal: np.ndarray,
sampling_rate: int,
) -> pd.Index:
r"""Apply processing to signal.
This function processes the signal **without** transforming the output
into a :class:`pd.MultiIndex`. Instead, it will return the raw
processed signal. However, if channel selection, mixdown
and/or resampling is enabled, the signal will be first remixed and
resampled if the input sampling rate does not fit the expected
sampling rate.
Args:
signal: signal values
sampling_rate: sampling rate in Hz
Returns:
Processed signal
Raises:
RuntimeError: if sampling rates do not match
RuntimeError: if channel selection is invalid
"""
return self.process(
signal,
sampling_rate,
)