emozionalmente

Created by Fabio Catania

version

1.0.0

license

CC-BY-4.0

usage

commercial

languages

ita

format

wav

channel

1

sampling rate

16000, 44100

bit depth

16

duration

0 days 06:18:17.953674178

files

6902, duration distribution: 0.8 s emozionalmente-1.0.0-file-duration-distribution 13.9 s

repository

audb-public

Description

Emozionalmente is an extensive, crowdsourced Italian emotional speech corpus. The dataset consists of 6902 labeled samples acted out by 431 amateur actors while verbalizing 18 different sentences expressing the Big Six emotions (anger, disgust, fear, joy, sadness, surprise) plus neutrality. Labels represent the emotional communicative intention of the actors (i.e., the seven emotional states). Recordings were generally obtained with non-professional equipment. They are .wav files, mono-channel, and have a sample size of 16 bits and a sample rate of 16000 Hz. Each audio recording lasts 3.81 seconds (SD = 0.99 seconds). The emotional content of the clips were validated by asking 829 humans (5 evaluations per audio) to guess the emotion contained in each recording. Humans obtained a general accuracy of 66%.

Example

audio/1616256756877.wav

../_images/emozionalmente-1.0.0-player-waveform.png

Tables

Click on a row to toggle a preview.

ID

Type

Columns

emotion.categories.dev.desired

filewise

emotion

file

emotion

audio/1614951631538.wav

anger

audio/1613994293936.wav

anger

audio/1613562322650.wav

anger

audio/1614266094803.wav

anger

audio/1615229375102.wav

anger

1686 rows x 1 column

emotion.categories.dev.gold_standard

filewise

emotion, emotion.agreement

file

emotion

emotion.agreement

audio/1614951631538.wav

no_agreement

0.4

audio/1613994293936.wav

anger

1.0

audio/1613562322650.wav

anger

1.0

audio/1614266094803.wav

no_agreement

0.4

audio/1615229375102.wav

surprise

0.6

1686 rows x 2 columns

emotion.categories.dev.votes

filewise

anger, disgust, fear, happiness, neutral, sadness, surprise

file

anger

disgust

fear

happiness

neutral

sadness

surprise

audio/1614951631538.wav

2

2

0

0

0

0

1

audio/1613994293936.wav

5

0

0

0

0

0

0

audio/1613562322650.wav

5

0

0

0

0

0

0

audio/1614266094803.wav

2

0

0

1

0

0

2

audio/1615229375102.wav

2

0

0

0

0

0

3

1686 rows x 7 columns

emotion.categories.test.desired

filewise

emotion

file

emotion

audio/1617135480050.wav

anger

audio/1613586149044.wav

anger

audio/1617135448748.wav

anger

audio/1616505237674.wav

anger

audio/1614359087222.wav

anger

1228 rows x 1 column

emotion.categories.test.gold_standard

filewise

emotion, emotion.agreement

file

emotion

emotion.agreement

audio/1617135480050.wav

anger

0.4

audio/1613586149044.wav

anger

0.8

audio/1617135448748.wav

anger

1.0

audio/1616505237674.wav

anger

0.6

audio/1614359087222.wav

surprise

0.6

1228 rows x 2 columns

emotion.categories.test.votes

filewise

anger, disgust, fear, happiness, neutral, sadness, surprise

file

anger

disgust

fear

happiness

neutral

sadness

surprise

audio/1617135480050.wav

2

0

0

1

1

0

1

audio/1613586149044.wav

4

0

0

0

1

0

0

audio/1617135448748.wav

5

0

0

0

0

0

0

audio/1616505237674.wav

3

0

0

0

0

0

2

audio/1614359087222.wav

2

0

0

0

0

0

3

1228 rows x 7 columns

emotion.categories.train.desired

filewise

emotion

file

emotion

audio/1613671614352.wav

anger

audio/1613658275427.wav

anger

audio/1613324357435.wav

anger

audio/1614274086698.wav

anger

audio/1612982146424.wav

anger

3988 rows x 1 column

emotion.categories.train.gold_standard

filewise

emotion, emotion.agreement

file

emotion

emotion.agreement

audio/1613671614352.wav

neutral

0.4

audio/1613658275427.wav

anger

0.8

audio/1613324357435.wav

anger

0.8

audio/1614274086698.wav

anger

0.6

audio/1612982146424.wav

anger

0.6

3988 rows x 2 columns

emotion.categories.train.votes

filewise

anger, disgust, fear, happiness, neutral, sadness, surprise

file

anger

disgust

fear

happiness

neutral

sadness

surprise

audio/1613671614352.wav

1

0

0

0

2

1

1

audio/1613658275427.wav

4

0

0

1

0

0

0

audio/1613324357435.wav

4

0

0

0

1

0

0

audio/1614274086698.wav

3

1

0

0

0

0

1

audio/1612982146424.wav

3

0

0

0

2

0

0

3988 rows x 7 columns

files

filewise

speaker, transcription

file

speaker

transcription

audio/1614951631538.wav

d4bbc5043503b9aed309ede00854ee48937684b57a1cc030ee5f42986fbfed7c

s0

audio/1613671614352.wav

b830cbf6e79aeeeec1fbf2ef3be741628ffc574c9b15f30634b8e8cc56bd17b9

s1

audio/1613994293936.wav

acdd987f9c1700b25898d3bd30c201df5ad4f34b3ca5ebeb7a8f02d240eeb864

s2

audio/1617135480050.wav

28043d2516f2d956b81ce66cc01fbd427ac54ff1eb3a07dae906e9be50a92024

s0

audio/1613658275427.wav

5b8476bb94a4a1a17df32b417ec035029f48e4487c9055203fb02353eccd46a1

s3

6902 rows x 2 columns

speaker

misc

age, gender, mother_tongue

speaker

age

gender

mother_tongue

f04bb0e6361c05acba4d5185a2d372177bdb77898c1a213f5dfe5c1d60331ea1

30

female

italian

b395b3d82da20e930e20220a5ab4de9adb9a12aaa7cecf17fc09d3a95b3edcb6

26

male

italian

69a6f8fa8a7d2e7338bddab3f872ba3532c914f62ebfebe9e11b88be24209fee

26

female

italian

5b1d678a1b4936c172e8c239785f89a2693f7603890c413fffc9e8629243cd77

54

female

italian

1718aa7e2d0821e3ade5783b4e045ab5930ec22054a0fe5e80146dfce17fae3d

11

female

italian

431 rows x 3 columns

Schemes

ID

Dtype

Min

Max

Labels

Mappings

age

int

0

emotion

str

anger, disgust, fear, happiness, neutral, no_agreement, sadness, surprise

original

emotion.agreement

float

0

1

gender

str

female, male, other

mother_tongue

str

italian

speaker

str

00a0efc0faaeb5a288481a25b5d0b7d4c0b070120c6d61be6ef7b255fcdfd17f, 00cb13bcf2382ca6eea64f955fc100530bb625a8e646ca83a2c207fd1d460dcd, 01de3a316dafa26a6e15d40720bc94e0706da6e0831274ea04dc25bccf87de9b, 026c4643a1d88e86eb050ba36c1b9de370ec06a34d58152fba030b80c1f7f573, 032bd54539dc739de8c4d77eda2bee1f933a6dd243e4447977b6b39b4d4f83bb, 03f34507d21d41467491672837afd7a5bcfb46357a300202d48c6437f359d5c8, 0518bb1812bd73aeb1a16e59f6205fca9f97ad2975fbe1a5ce10ef9389de091e, […], fdc94cca304ff508ca4791c1c56f307e4a9d2b5377e9cf1174a4182d7e664385, fe5a73de495ae5b09dcc4b895077ddc389ca689a95096dfcfe5814e7256fe794, fe9d679c7c9b995f2e68dae1261d951212cf92bde2ed7db234633f73dc447b30, fed370a920999e1f0e9ec1aa991e6d2be1b5c96f4268b9995329ee996de953f6, ff169b904af82953988d069875f82df46ae385e13949de9f8dba7503a76a3eca, ff1d25f750dcd0053c95aa615cafabb23e8dcf92e119155c1be68ac54a38f358, ff52b456027ce6b6692e375839d865ca9c1b2b73bbe096317f029e8872f36ab2, ffceba26ef879ad0650c42becbe7f1a7ff301cc763a92611d71a56dfb386aca4

age, gender, mother_tongue

transcription

str

s0, s1, s10, s11, s12, s13, s14, […], s2, s3, s4, s5, s6, s7, s8, s9

votes

int

0